On the image in $H^2(Q^3;R)$ of the set of closed 2-forms with preassigned kernel
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 125-136
Voir la notice de l'article provenant de la source Math-Net.Ru
If $(P^{2n},\omega)$ is a symplectic manifold and $Q^3$ is its orientable closed submanifold such that $\omega/Q\ne0$, then there arises a one-dimensional distribution $\mathcal L=\operatorname{Ker}(\omega/Q)$. We study the dependence of $\omega$ in a neighborhood of $Q^3$ and of $[\omega]\in H^2(Q;R)$ on $\mathcal L$. Bibl. 13 titles.
@article{ZNSL_1996_234_a8,
author = {B. S. Kruglikov},
title = {On the image in $H^2(Q^3;R)$ of the set of closed 2-forms with preassigned kernel},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--136},
publisher = {mathdoc},
volume = {234},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a8/}
}
B. S. Kruglikov. On the image in $H^2(Q^3;R)$ of the set of closed 2-forms with preassigned kernel. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 125-136. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a8/