On the image in $H^2(Q^3;R)$ of the set of closed 2-forms with preassigned kernel
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 125-136

Voir la notice de l'article provenant de la source Math-Net.Ru

If $(P^{2n},\omega)$ is a symplectic manifold and $Q^3$ is its orientable closed submanifold such that $\omega/Q\ne0$, then there arises a one-dimensional distribution $\mathcal L=\operatorname{Ker}(\omega/Q)$. We study the dependence of $\omega$ in a neighborhood of $Q^3$ and of $[\omega]\in H^2(Q;R)$ on $\mathcal L$. Bibl. 13 titles.
@article{ZNSL_1996_234_a8,
     author = {B. S. Kruglikov},
     title = {On the image in $H^2(Q^3;R)$ of the set of closed 2-forms with preassigned kernel},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--136},
     publisher = {mathdoc},
     volume = {234},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a8/}
}
TY  - JOUR
AU  - B. S. Kruglikov
TI  - On the image in $H^2(Q^3;R)$ of the set of closed 2-forms with preassigned kernel
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 125
EP  - 136
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a8/
LA  - en
ID  - ZNSL_1996_234_a8
ER  - 
%0 Journal Article
%A B. S. Kruglikov
%T On the image in $H^2(Q^3;R)$ of the set of closed 2-forms with preassigned kernel
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 125-136
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a8/
%G en
%F ZNSL_1996_234_a8
B. S. Kruglikov. On the image in $H^2(Q^3;R)$ of the set of closed 2-forms with preassigned kernel. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 125-136. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a8/