On some integrable cases in surface theory
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 65-124

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown how to reformulate the Gauss–Codazzi system for a surface with arbitrary Gaussian curvature in the form of one second-order differential equation. A similar reformulation is performed for a surface with fixed mean curvature. In the cases of two-dimensional Bianchi surfaces of positive curvature, these equations correspond to the unitary reduction of the coupled Ernst system of the equations of general gravity. The theta-functional description of the corresponding geometric objects is given. Bibl. 22 titles.
@article{ZNSL_1996_234_a7,
     author = {D. A. Korotkin},
     title = {On some integrable cases in surface theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {65--124},
     publisher = {mathdoc},
     volume = {234},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a7/}
}
TY  - JOUR
AU  - D. A. Korotkin
TI  - On some integrable cases in surface theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 65
EP  - 124
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a7/
LA  - en
ID  - ZNSL_1996_234_a7
ER  - 
%0 Journal Article
%A D. A. Korotkin
%T On some integrable cases in surface theory
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 65-124
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a7/
%G en
%F ZNSL_1996_234_a7
D. A. Korotkin. On some integrable cases in surface theory. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 65-124. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a7/