On the structure of 3-dimensional minimal parabolic surfaces in Euclidean space
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 20-38

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the structure of a three-dimensional minimal parabolic surface is determined by the pair $(V^2,\gamma)$, where $V^2$ is a minimal two-dimensional surface in $S^n$ and $\gamma$ satisfies $\Delta\gamma+2\gamma=0$ (here $\Delta$ is the Laplace operator in $R^n$). It is also shown that the singularities of the surface are determined by zeros of $\gamma$. Bibl. 9 titles.
@article{ZNSL_1996_234_a4,
     author = {A. A. Borisenko (jr.)},
     title = {On the structure of 3-dimensional minimal parabolic surfaces in {Euclidean} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--38},
     publisher = {mathdoc},
     volume = {234},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a4/}
}
TY  - JOUR
AU  - A. A. Borisenko (jr.)
TI  - On the structure of 3-dimensional minimal parabolic surfaces in Euclidean space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 20
EP  - 38
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a4/
LA  - en
ID  - ZNSL_1996_234_a4
ER  - 
%0 Journal Article
%A A. A. Borisenko (jr.)
%T On the structure of 3-dimensional minimal parabolic surfaces in Euclidean space
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 20-38
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a4/
%G en
%F ZNSL_1996_234_a4
A. A. Borisenko (jr.). On the structure of 3-dimensional minimal parabolic surfaces in Euclidean space. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 20-38. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a4/