On the structure of 3-dimensional minimal parabolic surfaces in Euclidean space
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 20-38
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the structure of a three-dimensional minimal parabolic surface is determined by the pair $(V^2,\gamma)$, where $V^2$ is a minimal two-dimensional surface in $S^n$ and $\gamma$ satisfies $\Delta\gamma+2\gamma=0$ (here $\Delta$ is the Laplace operator in $R^n$). It is also shown that the singularities of the surface are determined by zeros of $\gamma$. Bibl. 9 titles.
@article{ZNSL_1996_234_a4,
author = {A. A. Borisenko (jr.)},
title = {On the structure of 3-dimensional minimal parabolic surfaces in {Euclidean} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {20--38},
publisher = {mathdoc},
volume = {234},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a4/}
}
A. A. Borisenko (jr.). On the structure of 3-dimensional minimal parabolic surfaces in Euclidean space. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 20-38. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a4/