Isometric immersions of domains of Lobachevsky space in Euclidean spaces
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 11-16
Voir la notice de l'article provenant de la source Math-Net.Ru
Immersions of domains of the $n$-dimensional Lobachevsky space $L^n$ in the $(2n-1)$-dimensional Euclidean space $E^{2n-1}$ are studied. It is shown that the problem of isometric immersion of domains of $L^n$ in $E^{2n-1}$ is reduced to the study of a certain system of nonlinear partial differential equations, yielding the sine-Gordon equation as one of the special cases.
@article{ZNSL_1996_234_a2,
author = {Yu. A. Aminov},
title = {Isometric immersions of domains of {Lobachevsky} space in {Euclidean} spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {11--16},
publisher = {mathdoc},
volume = {234},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a2/}
}
Yu. A. Aminov. Isometric immersions of domains of Lobachevsky space in Euclidean spaces. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 11-16. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a2/