Isometric immersions of domains of Lobachevsky space in Euclidean spaces
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 11-16

Voir la notice de l'article provenant de la source Math-Net.Ru

Immersions of domains of the $n$-dimensional Lobachevsky space $L^n$ in the $(2n-1)$-dimensional Euclidean space $E^{2n-1}$ are studied. It is shown that the problem of isometric immersion of domains of $L^n$ in $E^{2n-1}$ is reduced to the study of a certain system of nonlinear partial differential equations, yielding the sine-Gordon equation as one of the special cases.
@article{ZNSL_1996_234_a2,
     author = {Yu. A. Aminov},
     title = {Isometric immersions of domains of {Lobachevsky} space in {Euclidean} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {11--16},
     publisher = {mathdoc},
     volume = {234},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a2/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Isometric immersions of domains of Lobachevsky space in Euclidean spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 11
EP  - 16
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a2/
LA  - en
ID  - ZNSL_1996_234_a2
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Isometric immersions of domains of Lobachevsky space in Euclidean spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 11-16
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a2/
%G en
%F ZNSL_1996_234_a2
Yu. A. Aminov. Isometric immersions of domains of Lobachevsky space in Euclidean spaces. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 11-16. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a2/