Harmonic maps and harmonic morphisms
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 190-200

Voir la notice de l'article provenant de la source Math-Net.Ru

A harmonic morphism is a map between Riemannian manifolds which preserves Laplace's equation. We compare the properties of harmonic morphisms with those of the better known harmonic maps, seeing that they behave in some ways “dual” to the latter. In particular, we give representation theorems for harmonic morphisms in low dimensions which suggest that the equations might be soluble in some cases by integrable-system techniques in a similar way to that used in harmonic map theory. Bibl. 38 titles.
@article{ZNSL_1996_234_a14,
     author = {J. C. Wood},
     title = {Harmonic maps and harmonic morphisms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {190--200},
     publisher = {mathdoc},
     volume = {234},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a14/}
}
TY  - JOUR
AU  - J. C. Wood
TI  - Harmonic maps and harmonic morphisms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 190
EP  - 200
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a14/
LA  - en
ID  - ZNSL_1996_234_a14
ER  - 
%0 Journal Article
%A J. C. Wood
%T Harmonic maps and harmonic morphisms
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 190-200
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a14/
%G en
%F ZNSL_1996_234_a14
J. C. Wood. Harmonic maps and harmonic morphisms. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 190-200. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a14/