Curvature and absorption
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 187-189

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding a distribution of the sources of particles (or radiation) in a bounded domain $D$ by the outputting flow through the boundary $\partial D$ is considered. It is assumed that the domain $D$ is filled with a medium whose absorption, scattering diagram, and Riemannian metric are known. Under certain assumptions on these characteristics of the medium, the uniqueness of a solution and its stability are proved.
@article{ZNSL_1996_234_a13,
     author = {V. A. Sharafutdinov},
     title = {Curvature and absorption},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--189},
     publisher = {mathdoc},
     volume = {234},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a13/}
}
TY  - JOUR
AU  - V. A. Sharafutdinov
TI  - Curvature and absorption
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 187
EP  - 189
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a13/
LA  - en
ID  - ZNSL_1996_234_a13
ER  - 
%0 Journal Article
%A V. A. Sharafutdinov
%T Curvature and absorption
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 187-189
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a13/
%G en
%F ZNSL_1996_234_a13
V. A. Sharafutdinov. Curvature and absorption. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 187-189. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a13/