The problem of the regular isometric imbeddings and the Monge–Ampère equation of the hyperbolic type
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 177-186
Cet article a éte moissonné depuis la source Math-Net.Ru
A relationship between classical approaches to embeddings and the Monge–Ampère equations is described. A new method of constructing smooth solutions of the general Monge–Ampère equation of hyperbolic type for the domains of finite-stripe type is presented. Bibl. 18 titles.
@article{ZNSL_1996_234_a12,
author = {E. V. Shikin},
title = {The problem of the regular isometric imbeddings and the {Monge{\textendash}Amp\`ere} equation of the hyperbolic type},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {177--186},
year = {1996},
volume = {234},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a12/}
}
TY - JOUR AU - E. V. Shikin TI - The problem of the regular isometric imbeddings and the Monge–Ampère equation of the hyperbolic type JO - Zapiski Nauchnykh Seminarov POMI PY - 1996 SP - 177 EP - 186 VL - 234 UR - http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a12/ LA - en ID - ZNSL_1996_234_a12 ER -
E. V. Shikin. The problem of the regular isometric imbeddings and the Monge–Ampère equation of the hyperbolic type. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 177-186. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a12/