Topological properties of a~rotation function in integrable Jacobi problem for geodesics on ellipsoid
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 143-152
Voir la notice de l'article provenant de la source Math-Net.Ru
A new proof of the Bolsinov–Fomenko theorem on a geodesic flow on ellipsoids is given. Bibl. 2 titles.
@article{ZNSL_1996_234_a10,
author = {O. E. Orel},
title = {Topological properties of a~rotation function in integrable {Jacobi} problem for geodesics on ellipsoid},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {143--152},
publisher = {mathdoc},
volume = {234},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a10/}
}
TY - JOUR AU - O. E. Orel TI - Topological properties of a~rotation function in integrable Jacobi problem for geodesics on ellipsoid JO - Zapiski Nauchnykh Seminarov POMI PY - 1996 SP - 143 EP - 152 VL - 234 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a10/ LA - en ID - ZNSL_1996_234_a10 ER -
O. E. Orel. Topological properties of a~rotation function in integrable Jacobi problem for geodesics on ellipsoid. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 143-152. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a10/