Topological properties of a~rotation function in integrable Jacobi problem for geodesics on ellipsoid
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 143-152

Voir la notice de l'article provenant de la source Math-Net.Ru

A new proof of the Bolsinov–Fomenko theorem on a geodesic flow on ellipsoids is given. Bibl. 2 titles.
@article{ZNSL_1996_234_a10,
     author = {O. E. Orel},
     title = {Topological properties of a~rotation function in integrable {Jacobi} problem for geodesics on ellipsoid},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {143--152},
     publisher = {mathdoc},
     volume = {234},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a10/}
}
TY  - JOUR
AU  - O. E. Orel
TI  - Topological properties of a~rotation function in integrable Jacobi problem for geodesics on ellipsoid
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 143
EP  - 152
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a10/
LA  - en
ID  - ZNSL_1996_234_a10
ER  - 
%0 Journal Article
%A O. E. Orel
%T Topological properties of a~rotation function in integrable Jacobi problem for geodesics on ellipsoid
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 143-152
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a10/
%G en
%F ZNSL_1996_234_a10
O. E. Orel. Topological properties of a~rotation function in integrable Jacobi problem for geodesics on ellipsoid. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 143-152. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a10/