New examples of manifolds with negative curvature
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 7-10

Voir la notice de l'article provenant de la source Math-Net.Ru

This lecture is about the global structure of Riemannian manifolds with negative sectional curvature and finite volume. A fundamental question is to find and analyze geometric conditions which ensure that $M^n$ has finitely many ends or stronger that $M^n$ is of finite topological type.
@article{ZNSL_1996_234_a1,
     author = {U. Abresch},
     title = {New examples of manifolds with negative curvature},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--10},
     publisher = {mathdoc},
     volume = {234},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a1/}
}
TY  - JOUR
AU  - U. Abresch
TI  - New examples of manifolds with negative curvature
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 7
EP  - 10
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a1/
LA  - en
ID  - ZNSL_1996_234_a1
ER  - 
%0 Journal Article
%A U. Abresch
%T New examples of manifolds with negative curvature
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 7-10
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a1/
%G en
%F ZNSL_1996_234_a1
U. Abresch. New examples of manifolds with negative curvature. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 7-10. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a1/