Existence, uniqueness and attainability of periodic solutions of the Navier–Stokes equations in exterior domains
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 142-182
Cet article a éte moissonné depuis la source Math-Net.Ru
For arbitrary domain $\Omega\subset\mathbb R^n$, $n=2,3$, $\Omega\ne\mathbb R^2$, we prove the existence of weak periodic solutions to the Navier–Stokes equations and of regular solutions if the data are small or satisfy certain symmetry conditions. We show also that the periodic regular solutions are stable. Bibl. 38 titles.
@article{ZNSL_1996_233_a9,
author = {P. Maremonti and M. Padula},
title = {Existence, uniqueness and attainability of periodic solutions of the {Navier{\textendash}Stokes} equations in exterior domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {142--182},
year = {1996},
volume = {233},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a9/}
}
TY - JOUR AU - P. Maremonti AU - M. Padula TI - Existence, uniqueness and attainability of periodic solutions of the Navier–Stokes equations in exterior domains JO - Zapiski Nauchnykh Seminarov POMI PY - 1996 SP - 142 EP - 182 VL - 233 UR - http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a9/ LA - en ID - ZNSL_1996_233_a9 ER -
%0 Journal Article %A P. Maremonti %A M. Padula %T Existence, uniqueness and attainability of periodic solutions of the Navier–Stokes equations in exterior domains %J Zapiski Nauchnykh Seminarov POMI %D 1996 %P 142-182 %V 233 %U http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a9/ %G en %F ZNSL_1996_233_a9
P. Maremonti; M. Padula. Existence, uniqueness and attainability of periodic solutions of the Navier–Stokes equations in exterior domains. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 142-182. http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a9/