Existence, uniqueness and attainability of periodic solutions of the Navier–Stokes equations in exterior domains
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 142-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For arbitrary domain $\Omega\subset\mathbb R^n$, $n=2,3$, $\Omega\ne\mathbb R^2$, we prove the existence of weak periodic solutions to the Navier–Stokes equations and of regular solutions if the data are small or satisfy certain symmetry conditions. We show also that the periodic regular solutions are stable. Bibl. 38 titles.
@article{ZNSL_1996_233_a9,
     author = {P. Maremonti and M. Padula},
     title = {Existence, uniqueness and attainability of periodic solutions of the {Navier{\textendash}Stokes} equations in exterior domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {142--182},
     year = {1996},
     volume = {233},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a9/}
}
TY  - JOUR
AU  - P. Maremonti
AU  - M. Padula
TI  - Existence, uniqueness and attainability of periodic solutions of the Navier–Stokes equations in exterior domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 142
EP  - 182
VL  - 233
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a9/
LA  - en
ID  - ZNSL_1996_233_a9
ER  - 
%0 Journal Article
%A P. Maremonti
%A M. Padula
%T Existence, uniqueness and attainability of periodic solutions of the Navier–Stokes equations in exterior domains
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 142-182
%V 233
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a9/
%G en
%F ZNSL_1996_233_a9
P. Maremonti; M. Padula. Existence, uniqueness and attainability of periodic solutions of the Navier–Stokes equations in exterior domains. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 142-182. http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a9/