On viscosity solutions for non-totally parabolic fully nonlinear equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 112-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is shown, how to prove global unique solvability of the first initial-boundary value problem in the class of continuous viscosity solutions for some classes of equations $-u_t+\mathcal F(u_x,u_{xx})=g(x,t,u_x)$ wit $\mathcal F(p,A)$ determined and elliptic only on some nonlinear subsets of values of arguments $(p,A)$. For this purpose we use the technic developed in the theory of viscosity solutions for degenerate elliptic equations. Bibl. 12 titles.
@article{ZNSL_1996_233_a7,
     author = {O. A. Ladyzhenskaya},
     title = {On viscosity solutions for non-totally parabolic fully nonlinear equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {112--130},
     year = {1996},
     volume = {233},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a7/}
}
TY  - JOUR
AU  - O. A. Ladyzhenskaya
TI  - On viscosity solutions for non-totally parabolic fully nonlinear equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 112
EP  - 130
VL  - 233
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a7/
LA  - en
ID  - ZNSL_1996_233_a7
ER  - 
%0 Journal Article
%A O. A. Ladyzhenskaya
%T On viscosity solutions for non-totally parabolic fully nonlinear equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 112-130
%V 233
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a7/
%G en
%F ZNSL_1996_233_a7
O. A. Ladyzhenskaya. On viscosity solutions for non-totally parabolic fully nonlinear equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 112-130. http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a7/