On viscosity solutions for non-totally parabolic fully nonlinear equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 112-130
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown, how to prove global unique solvability of the first initial-boundary value problem in the class of continuous viscosity solutions for some classes of equations $-u_t+\mathcal F(u_x,u_{xx})=g(x,t,u_x)$ wit $\mathcal F(p,A)$ determined and elliptic only on some nonlinear subsets of values of arguments $(p,A)$. For this purpose we use the technic developed in the theory of viscosity solutions for degenerate elliptic equations. Bibl. 12 titles.
@article{ZNSL_1996_233_a7,
author = {O. A. Ladyzhenskaya},
title = {On viscosity solutions for non-totally parabolic fully nonlinear equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {112--130},
year = {1996},
volume = {233},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a7/}
}
O. A. Ladyzhenskaya. On viscosity solutions for non-totally parabolic fully nonlinear equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 112-130. http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a7/