On the Dirichlet problem for fully nonlinear parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 101-111
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper contains a description of new class of fully nonlinear second-order parabolic equations. The pecularity of this class is a nonlinear dependence of equations both on first-order time derivative and second-order spacial ones. The application of classical continuity method to solve the first initial-boundary value problem for such equations is also discussed. Bibl. 15 titles.
@article{ZNSL_1996_233_a6,
author = {N. M. Ivochkina},
title = {On the {Dirichlet} problem for fully nonlinear parabolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {101--111},
year = {1996},
volume = {233},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a6/}
}
N. M. Ivochkina. On the Dirichlet problem for fully nonlinear parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 101-111. http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a6/