On the Dirichlet problem for fully nonlinear parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 101-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper contains a description of new class of fully nonlinear second-order parabolic equations. The pecularity of this class is a nonlinear dependence of equations both on first-order time derivative and second-order spacial ones. The application of classical continuity method to solve the first initial-boundary value problem for such equations is also discussed. Bibl. 15 titles.
@article{ZNSL_1996_233_a6,
     author = {N. M. Ivochkina},
     title = {On the {Dirichlet} problem for fully nonlinear parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--111},
     year = {1996},
     volume = {233},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a6/}
}
TY  - JOUR
AU  - N. M. Ivochkina
TI  - On the Dirichlet problem for fully nonlinear parabolic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 101
EP  - 111
VL  - 233
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a6/
LA  - en
ID  - ZNSL_1996_233_a6
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%T On the Dirichlet problem for fully nonlinear parabolic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 101-111
%V 233
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a6/
%G en
%F ZNSL_1996_233_a6
N. M. Ivochkina. On the Dirichlet problem for fully nonlinear parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 101-111. http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a6/