On a~steady motion of a~drop in an infinite liquid medium
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 233-254

Voir la notice de l'article provenant de la source Math-Net.Ru

There is given a rigorous proof of the solvability of the free boundary problem for the Navier–Stokes equations governing a steady fall (or uprising) of a drop in an infinite liquid medium. It is assumed that the densities of both liquids are close to each other and the solution is obtained as a perturbation of the rest state. However, in comparison with other problems of this type, the proof requires much more delicate arguments since the Frechet derivative of the corresponding operator computed at the rest state is not invertible. Bibl. 8 titles.
@article{ZNSL_1996_233_a14,
     author = {V. A. Solonnikov},
     title = {On a~steady motion of a~drop in an infinite liquid medium},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {233--254},
     publisher = {mathdoc},
     volume = {233},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a14/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - On a~steady motion of a~drop in an infinite liquid medium
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 233
EP  - 254
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a14/
LA  - en
ID  - ZNSL_1996_233_a14
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T On a~steady motion of a~drop in an infinite liquid medium
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 233-254
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a14/
%G en
%F ZNSL_1996_233_a14
V. A. Solonnikov. On a~steady motion of a~drop in an infinite liquid medium. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 233-254. http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a14/