Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 227-232
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We discuss the problem of global $W^1_2$-regularity for the strew tensor of a perfect elastic-plastic body being in equilibrium. In particular, we construct an example, showing that the method proposed by the author to establish local $W^1_2$-regularity, in general does not work in investigations of regularity up to the boundary if the given body is non-convex. Bibl. 3 titles.
			
            
            
            
          
        
      @article{ZNSL_1996_233_a13,
     author = {G. A. Seregin},
     title = {Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {227--232},
     publisher = {mathdoc},
     volume = {233},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a13/}
}
                      
                      
                    TY - JOUR AU - G. A. Seregin TI - Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory JO - Zapiski Nauchnykh Seminarov POMI PY - 1996 SP - 227 EP - 232 VL - 233 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a13/ LA - en ID - ZNSL_1996_233_a13 ER -
G. A. Seregin. Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 227-232. http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a13/