Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 227-232
Cet article a éte moissonné depuis la source Math-Net.Ru
We discuss the problem of global $W^1_2$-regularity for the strew tensor of a perfect elastic-plastic body being in equilibrium. In particular, we construct an example, showing that the method proposed by the author to establish local $W^1_2$-regularity, in general does not work in investigations of regularity up to the boundary if the given body is non-convex. Bibl. 3 titles.
@article{ZNSL_1996_233_a13,
author = {G. A. Seregin},
title = {Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {227--232},
year = {1996},
volume = {233},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a13/}
}
TY - JOUR AU - G. A. Seregin TI - Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory JO - Zapiski Nauchnykh Seminarov POMI PY - 1996 SP - 227 EP - 232 VL - 233 UR - http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a13/ LA - en ID - ZNSL_1996_233_a13 ER -
G. A. Seregin. Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Tome 233 (1996), pp. 227-232. http://geodesic.mathdoc.fr/item/ZNSL_1996_233_a13/