Estimates of the derivatives of $n$-convex functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 123-133

Voir la notice de l'article provenant de la source Math-Net.Ru

In terms of nonlinear norm estimates, a qualitative refinement of the following known result is obtained: on the class of $n$-convex functions, the $L^1$-convergence implies the $C^{(n-2)}$-convergence. Bibl. 2 titles.
@article{ZNSL_1996_232_a9,
     author = {V. A. Malyshev},
     title = {Estimates of the derivatives of $n$-convex functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {123--133},
     publisher = {mathdoc},
     volume = {232},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a9/}
}
TY  - JOUR
AU  - V. A. Malyshev
TI  - Estimates of the derivatives of $n$-convex functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 123
EP  - 133
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a9/
LA  - ru
ID  - ZNSL_1996_232_a9
ER  - 
%0 Journal Article
%A V. A. Malyshev
%T Estimates of the derivatives of $n$-convex functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 123-133
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a9/
%G ru
%F ZNSL_1996_232_a9
V. A. Malyshev. Estimates of the derivatives of $n$-convex functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 123-133. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a9/