One-dimensional perturbations of singular unitary operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 118-122
Voir la notice de l'article provenant de la source Math-Net.Ru
Under some natural restrictions, we prove that any one-dimensional perturbation of a singular unitary operator on a Hilbert space is unitarily equivalent to a model operator on a space determined (in a certain precise way) by two functions from the Hardy space $H^2$. Bibl. 3 titles.
@article{ZNSL_1996_232_a8,
author = {V. V. Kapustin},
title = {One-dimensional perturbations of singular unitary operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {118--122},
publisher = {mathdoc},
volume = {232},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a8/}
}
V. V. Kapustin. One-dimensional perturbations of singular unitary operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 118-122. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a8/