One-dimensional perturbations of singular unitary operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 118-122

Voir la notice de l'article provenant de la source Math-Net.Ru

Under some natural restrictions, we prove that any one-dimensional perturbation of a singular unitary operator on a Hilbert space is unitarily equivalent to a model operator on a space determined (in a certain precise way) by two functions from the Hardy space $H^2$. Bibl. 3 titles.
@article{ZNSL_1996_232_a8,
     author = {V. V. Kapustin},
     title = {One-dimensional perturbations of singular unitary operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {118--122},
     publisher = {mathdoc},
     volume = {232},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a8/}
}
TY  - JOUR
AU  - V. V. Kapustin
TI  - One-dimensional perturbations of singular unitary operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 118
EP  - 122
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a8/
LA  - ru
ID  - ZNSL_1996_232_a8
ER  - 
%0 Journal Article
%A V. V. Kapustin
%T One-dimensional perturbations of singular unitary operators
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 118-122
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a8/
%G ru
%F ZNSL_1996_232_a8
V. V. Kapustin. One-dimensional perturbations of singular unitary operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 118-122. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a8/