On annihilators of harmonic vector fields
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 90-108
Voir la notice de l'article provenant de la source Math-Net.Ru
For $\Omega\subset\mathbb R^n$ a smoothly bounded domain we characterize smooth vector fields $g$ on $\partial\Omega$ which annihilate all harmonic vector fields $f$ in $\Omega$ continuous up to $\partial\Omega$, with respect to the pairing $\langle f,g\rangle=\int_{\partial\Omega}f\cdot g\,d\sigma$ ($d\sigma$ denotes the hypersurface measure on $\partial\Omega$). Also, we extend these results to the context of differential forms with harmonic vector fields being replaced by harmonic fields, i.e., forms $f$ satisfying $df=0$, $\delta f=0$. Then a smooth form $g$ on $\partial\Omega$ is an annihilator if and only if suitable extensions, $u$ and $v$, into $\Omega$ of its normal and tangential components on $\partial\Omega$ satisfy the generalized Cauchy–Riemann system $du=\delta v$, $\delta u=0$, $dv=0$ in $\Omega$. Finally we prove that the smooth annihilators we describe are weak$^*$ dense among all annihilators. Bibl. 12 titles.
@article{ZNSL_1996_232_a6,
author = {B. Gustafsson and D. Khavinson},
title = {On annihilators of harmonic vector fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {90--108},
publisher = {mathdoc},
volume = {232},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a6/}
}
B. Gustafsson; D. Khavinson. On annihilators of harmonic vector fields. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 90-108. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a6/