The inverse problem for Jacobi systems with symmetry
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 86-89

Voir la notice de l'article provenant de la source Math-Net.Ru

A Jacobi homogeneous linear system of partial differential equations is recovered by its infinitesimal operator and a universal invariant of a one-parameter Lie group. Bibl. 5 titles.
@article{ZNSL_1996_232_a5,
     author = {V. N. Gorbuzov and A. P. Gaidukevich},
     title = {The inverse problem for {Jacobi} systems with symmetry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {86--89},
     publisher = {mathdoc},
     volume = {232},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a5/}
}
TY  - JOUR
AU  - V. N. Gorbuzov
AU  - A. P. Gaidukevich
TI  - The inverse problem for Jacobi systems with symmetry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 86
EP  - 89
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a5/
LA  - ru
ID  - ZNSL_1996_232_a5
ER  - 
%0 Journal Article
%A V. N. Gorbuzov
%A A. P. Gaidukevich
%T The inverse problem for Jacobi systems with symmetry
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 86-89
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a5/
%G ru
%F ZNSL_1996_232_a5
V. N. Gorbuzov; A. P. Gaidukevich. The inverse problem for Jacobi systems with symmetry. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 86-89. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a5/