Approximation on limit compacta of Kleinian groups
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 199-212

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a geometrically finite Kleinian group, acting on $\mathbb C$, and let $\Lambda$ be the limit set of $\Gamma$, $\Omega=\mathbb C\setminus\Lambda$, $\infty\in\Omega$. Denote by $X$ either $C(\Lambda)$ or $h^\alpha(\Lambda)$, where $h^\alpha(\Lambda)=\{f\colon|f(z)-f(\zeta)|=o(|z-\zeta|^\alpha),\ z,\zeta\in\Lambda\}$. In а natural way, with the action of $\Gamma$ we relate a contable set $\Xi\subset\Omega$ and prove that $\operatorname{clos}_XL(\frac1{z-\alpha},\alpha\in\Xi)=X$. Bibl. 6 titles.
@article{ZNSL_1996_232_a14,
     author = {N. A. Shirokov},
     title = {Approximation on limit compacta of {Kleinian} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--212},
     publisher = {mathdoc},
     volume = {232},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a14/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Approximation on limit compacta of Kleinian groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 199
EP  - 212
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a14/
LA  - ru
ID  - ZNSL_1996_232_a14
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Approximation on limit compacta of Kleinian groups
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 199-212
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a14/
%G ru
%F ZNSL_1996_232_a14
N. A. Shirokov. Approximation on limit compacta of Kleinian groups. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 199-212. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a14/