Approximation on limit compacta of Kleinian groups
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 199-212
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma$ be a geometrically finite Kleinian group, acting on $\mathbb C$, and let $\Lambda$ be the limit set of $\Gamma$, $\Omega=\mathbb C\setminus\Lambda$, $\infty\in\Omega$. Denote by $X$ either $C(\Lambda)$ or $h^\alpha(\Lambda)$, where $h^\alpha(\Lambda)=\{f\colon|f(z)-f(\zeta)|=o(|z-\zeta|^\alpha),\ z,\zeta\in\Lambda\}$. In а natural way, with the action of $\Gamma$ we relate a contable set $\Xi\subset\Omega$ and prove that $\operatorname{clos}_XL(\frac1{z-\alpha},\alpha\in\Xi)=X$. Bibl. 6 titles.
@article{ZNSL_1996_232_a14,
author = {N. A. Shirokov},
title = {Approximation on limit compacta of {Kleinian} groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {199--212},
publisher = {mathdoc},
volume = {232},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a14/}
}
N. A. Shirokov. Approximation on limit compacta of Kleinian groups. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 199-212. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a14/