Double operator integrals and their estimates in the uniform norm
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 148-173

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the conditions are considered for the existence of the double operator integral $\iint\varphi(\lambda,\mu)\,dE_\lambda TdF_\mu$, where $E_\lambda,F_\mu$ are the spectral functions of two self adjoint operators $A,B$ on a Hilbert space and $T$ is a bounded operator. In principal, the case where $A$ has finite spectrum is studied. Non-linear estimates of $\|f(A)T-Tf(B)\|$ in terms of the norm of $\|AT-TB\|$ for $f\in\operatorname{Lip}1$ are deduced. Also, a formula for the Fréchet derivative is presented. Bibl. 16 titles.
@article{ZNSL_1996_232_a12,
     author = {Yu. B. Farforovskaya},
     title = {Double operator integrals and their estimates in the uniform norm},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--173},
     publisher = {mathdoc},
     volume = {232},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a12/}
}
TY  - JOUR
AU  - Yu. B. Farforovskaya
TI  - Double operator integrals and their estimates in the uniform norm
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 148
EP  - 173
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a12/
LA  - ru
ID  - ZNSL_1996_232_a12
ER  - 
%0 Journal Article
%A Yu. B. Farforovskaya
%T Double operator integrals and their estimates in the uniform norm
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 148-173
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a12/
%G ru
%F ZNSL_1996_232_a12
Yu. B. Farforovskaya. Double operator integrals and their estimates in the uniform norm. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 148-173. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a12/