Uniqueness and normality for M. Riesz potentials and solutions of the Darboux equation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 141-147
Cet article a éte moissonné depuis la source Math-Net.Ru
M. Riesz potentials $U_\alpha^\mu(x)=\int_{\partial\Omega}\frac{d\mu(y)}{|x-y|^{n-1+\alpha}}$ are considered where $\Omega$ is a domain in $\mathbb R^{n+1}$ with a nice boundary $\partial\Omega$, $\mu$ a Borel charge on $\partial\Omega$. These potentials satisfy the Darboux equation \begin{equation} \Delta U+\frac\alpha yU_y=0,\qquad x=(\overline x,y),\quad\overline x\in\mathbb R^n. \end{equation} Theorems of the following kind are stated: if $U^\mu_\alpha$ and $\mu$ decrease rapidly near a point $p\in\partial\Omega$ along $\partial\Omega$, then $\mu\equiv0$; analogous results are stated for solutions of (1). These results are closely connected with “normality properties”, i.e., the uniform boundedness (on compact subsets of $\Omega$) of potentials (respectively, solutions of (1)) $U^\mu_\alpha$ satisfying some growth restrictions along $\partial\Omega$. Bibl. 10 titles.
@article{ZNSL_1996_232_a11,
author = {A. I. Sergeyev},
title = {Uniqueness and normality for {M.~Riesz} potentials and solutions of the {Darboux} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {141--147},
year = {1996},
volume = {232},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a11/}
}
A. I. Sergeyev. Uniqueness and normality for M. Riesz potentials and solutions of the Darboux equation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 141-147. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a11/