Uniqueness and normality for M.~Riesz potentials and solutions of the Darboux equation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 141-147
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			M. Riesz potentials $U_\alpha^\mu(x)=\int_{\partial\Omega}\frac{d\mu(y)}{|x-y|^{n-1+\alpha}}$ are considered where $\Omega$ is a domain in $\mathbb R^{n+1}$ with a nice boundary $\partial\Omega$, $\mu$ a Borel charge on $\partial\Omega$. These potentials satisfy the Darboux equation 
\begin{equation}
\Delta U+\frac\alpha yU_y=0,\qquad x=(\overline x,y),\quad\overline x\in\mathbb R^n.
\end{equation} 
Theorems of the following kind are stated: if $U^\mu_\alpha$ and $\mu$ decrease rapidly near a point $p\in\partial\Omega$ along $\partial\Omega$, then $\mu\equiv0$; analogous results are stated for solutions of (1). These results are closely connected with “normality properties”, i.e., the uniform boundedness (on compact subsets of $\Omega$) of potentials (respectively, solutions of (1)) $U^\mu_\alpha$ satisfying some growth restrictions along $\partial\Omega$. Bibl. 10 titles.
			
            
            
            
          
        
      @article{ZNSL_1996_232_a11,
     author = {A. I. Sergeyev},
     title = {Uniqueness and normality for {M.~Riesz} potentials and solutions of the {Darboux} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--147},
     publisher = {mathdoc},
     volume = {232},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a11/}
}
                      
                      
                    TY - JOUR AU - A. I. Sergeyev TI - Uniqueness and normality for M.~Riesz potentials and solutions of the Darboux equation JO - Zapiski Nauchnykh Seminarov POMI PY - 1996 SP - 141 EP - 147 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a11/ LA - ru ID - ZNSL_1996_232_a11 ER -
A. I. Sergeyev. Uniqueness and normality for M.~Riesz potentials and solutions of the Darboux equation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 141-147. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a11/