Uniqueness and normality for M.~Riesz potentials and solutions of the Darboux equation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 141-147

Voir la notice de l'article provenant de la source Math-Net.Ru

M. Riesz potentials $U_\alpha^\mu(x)=\int_{\partial\Omega}\frac{d\mu(y)}{|x-y|^{n-1+\alpha}}$ are considered where $\Omega$ is a domain in $\mathbb R^{n+1}$ with a nice boundary $\partial\Omega$, $\mu$ a Borel charge on $\partial\Omega$. These potentials satisfy the Darboux equation \begin{equation} \Delta U+\frac\alpha yU_y=0,\qquad x=(\overline x,y),\quad\overline x\in\mathbb R^n. \end{equation} Theorems of the following kind are stated: if $U^\mu_\alpha$ and $\mu$ decrease rapidly near a point $p\in\partial\Omega$ along $\partial\Omega$, then $\mu\equiv0$; analogous results are stated for solutions of (1). These results are closely connected with “normality properties”, i.e., the uniform boundedness (on compact subsets of $\Omega$) of potentials (respectively, solutions of (1)) $U^\mu_\alpha$ satisfying some growth restrictions along $\partial\Omega$. Bibl. 10 titles.
@article{ZNSL_1996_232_a11,
     author = {A. I. Sergeyev},
     title = {Uniqueness and normality for {M.~Riesz} potentials and solutions of the {Darboux} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--147},
     publisher = {mathdoc},
     volume = {232},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a11/}
}
TY  - JOUR
AU  - A. I. Sergeyev
TI  - Uniqueness and normality for M.~Riesz potentials and solutions of the Darboux equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 141
EP  - 147
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a11/
LA  - ru
ID  - ZNSL_1996_232_a11
ER  - 
%0 Journal Article
%A A. I. Sergeyev
%T Uniqueness and normality for M.~Riesz potentials and solutions of the Darboux equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 141-147
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a11/
%G ru
%F ZNSL_1996_232_a11
A. I. Sergeyev. Uniqueness and normality for M.~Riesz potentials and solutions of the Darboux equation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 141-147. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a11/