The Gelfand and Bernstein widths of some classes of analytic functions. II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 134-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Gelfand widths of the unit ball of $H^2(\nu)$ (the weighted Hardy space) with respect to the metric of the space $L_\infty(T_r)$ are considered ($T_r$ being the circle of radius $r$ centered at the origin), as well as the Bernstein widths of the unit ball of $H^\infty$ with respect to the metric of the space $L_2(T_r,\mu)$. The asymptotic formulas for the widths in the question are established for arbitrary measures $\nu,\mu$. Bibl. 5 titles.
@article{ZNSL_1996_232_a10,
     author = {O. G. Parfenov},
     title = {The {Gelfand} and {Bernstein} widths of some classes of analytic {functions.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--140},
     year = {1996},
     volume = {232},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a10/}
}
TY  - JOUR
AU  - O. G. Parfenov
TI  - The Gelfand and Bernstein widths of some classes of analytic functions. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 134
EP  - 140
VL  - 232
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a10/
LA  - ru
ID  - ZNSL_1996_232_a10
ER  - 
%0 Journal Article
%A O. G. Parfenov
%T The Gelfand and Bernstein widths of some classes of analytic functions. II
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 134-140
%V 232
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a10/
%G ru
%F ZNSL_1996_232_a10
O. G. Parfenov. The Gelfand and Bernstein widths of some classes of analytic functions. II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 134-140. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a10/