The Gelfand and Bernstein widths of some classes of analytic functions.~II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 134-140
Voir la notice de l'article provenant de la source Math-Net.Ru
The Gelfand widths of the unit ball of $H^2(\nu)$ (the weighted Hardy space) with respect to the metric of the space $L_\infty(T_r)$ are considered ($T_r$ being the circle of radius $r$ centered at the origin), as well as the Bernstein widths of the unit ball of $H^\infty$ with respect to the metric of the space $L_2(T_r,\mu)$. The asymptotic formulas for the widths in the question are established for arbitrary measures $\nu,\mu$. Bibl. 5 titles.
@article{ZNSL_1996_232_a10,
author = {O. G. Parfenov},
title = {The {Gelfand} and {Bernstein} widths of some classes of analytic {functions.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {134--140},
publisher = {mathdoc},
volume = {232},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a10/}
}
O. G. Parfenov. The Gelfand and Bernstein widths of some classes of analytic functions.~II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 134-140. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a10/