Lacunary series and pseudocontinuations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 16-32

Voir la notice de l'article provenant de la source Math-Net.Ru

The main aim of this paper is to prove the following assertion. Let $f=\sum_{n\in E}a_nz^n$ be a function holomorphic and of bounded characteristic in the unit disk $\mathbb D$ where $E$ is a $\Lambda(1)$-subset of $\mathbb Z_+$. Suppose $f$ has a pseudocontinuation of bounded characteristic in an annulus $\{z\in\mathbb C\colon1|z|$. Then $f$ admits analytic continuation to the disk $R\mathbb D$. In particular, $f$ is a polynomial if $R=+\infty$. Bibl. 16 titles.
@article{ZNSL_1996_232_a1,
     author = {A. B. Aleksandrov},
     title = {Lacunary series and pseudocontinuations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {16--32},
     publisher = {mathdoc},
     volume = {232},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a1/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Lacunary series and pseudocontinuations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 16
EP  - 32
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a1/
LA  - ru
ID  - ZNSL_1996_232_a1
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Lacunary series and pseudocontinuations
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 16-32
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a1/
%G ru
%F ZNSL_1996_232_a1
A. B. Aleksandrov. Lacunary series and pseudocontinuations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 16-32. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a1/