Isometric embeddings of coinvariant subspaces of the shift operator
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 5-15

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\theta$ be an inner function. The main aim of the paper is to describe all positive measures on the unit circle $\mathbb T$ such that $\int_\mathbb T|f|^2\,d\mu=\|f\|^2_{H^2}$ for all continuous functions $f\in H^2\ominus\theta H^2$. Bibl. 8 titles.
@article{ZNSL_1996_232_a0,
     author = {A. B. Aleksandrov},
     title = {Isometric embeddings of coinvariant subspaces of the shift operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--15},
     publisher = {mathdoc},
     volume = {232},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Isometric embeddings of coinvariant subspaces of the shift operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 5
EP  - 15
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a0/
LA  - ru
ID  - ZNSL_1996_232_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Isometric embeddings of coinvariant subspaces of the shift operator
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 5-15
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a0/
%G ru
%F ZNSL_1996_232_a0
A. B. Aleksandrov. Isometric embeddings of coinvariant subspaces of the shift operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 5-15. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a0/