Isometric embeddings of coinvariant subspaces of the shift operator
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 5-15
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\theta$ be an inner function. The main aim of the paper is to describe all positive measures on the unit circle $\mathbb T$ such that $\int_\mathbb T|f|^2\,d\mu=\|f\|^2_{H^2}$ for all continuous functions $f\in H^2\ominus\theta H^2$. Bibl. 8 titles.
@article{ZNSL_1996_232_a0,
author = {A. B. Aleksandrov},
title = {Isometric embeddings of coinvariant subspaces of the shift operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--15},
publisher = {mathdoc},
volume = {232},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a0/}
}
A. B. Aleksandrov. Isometric embeddings of coinvariant subspaces of the shift operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 24, Tome 232 (1996), pp. 5-15. http://geodesic.mathdoc.fr/item/ZNSL_1996_232_a0/