Homoclinic sums criterion for vanishing of spectral density
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 94-110
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(X,d)$ be a compact metric space, $T\colon X\to X$ be a homeomorphism satisfying certain suitable hyperbolicity hypothesis and $\mu$ be a Gibbs measure on $X$ relative to $T$. The following statement is proved in the paper.
Let $\lambda$ be a complex number with $|\lambda|=1$ and $f\colon X\to\mathbb C$ be a Hölder continuous function. Then the equality
$$
\sum_{k\in\mathbb Z}\lambda^{-k}\Biggl(\int_Xf(T^kx)\overline f(x)\mu(dx)-\Bigg|\int_Xf(x)\mu(dx)\Bigg|^2\Biggr)=0
$$
holds true if and only if the identity
$$
\sum_{k\in\mathbb Z}\lambda^{-k}(f(T^ky)-f(T^kx))=0
$$
is valid for each $x,y\in X$ with the property that $d(T^kx,T^ky)\xrightarrow[|k|\to\infty]{}0$. Bibl. 11 titles.
@article{ZNSL_1996_228_a8,
author = {M. I. Gordin},
title = {Homoclinic sums criterion for vanishing of spectral density},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {94--110},
publisher = {mathdoc},
volume = {228},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a8/}
}
M. I. Gordin. Homoclinic sums criterion for vanishing of spectral density. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 94-110. http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a8/