Homoclinic sums criterion for vanishing of spectral density
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 94-110

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,d)$ be a compact metric space, $T\colon X\to X$ be a homeomorphism satisfying certain suitable hyperbolicity hypothesis and $\mu$ be a Gibbs measure on $X$ relative to $T$. The following statement is proved in the paper. Let $\lambda$ be a complex number with $|\lambda|=1$ and $f\colon X\to\mathbb C$ be a Hölder continuous function. Then the equality $$ \sum_{k\in\mathbb Z}\lambda^{-k}\Biggl(\int_Xf(T^kx)\overline f(x)\mu(dx)-\Bigg|\int_Xf(x)\mu(dx)\Bigg|^2\Biggr)=0 $$ holds true if and only if the identity $$ \sum_{k\in\mathbb Z}\lambda^{-k}(f(T^ky)-f(T^kx))=0 $$ is valid for each $x,y\in X$ with the property that $d(T^kx,T^ky)\xrightarrow[|k|\to\infty]{}0$. Bibl. 11 titles.
@article{ZNSL_1996_228_a8,
     author = {M. I. Gordin},
     title = {Homoclinic sums criterion for vanishing of spectral density},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--110},
     publisher = {mathdoc},
     volume = {228},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a8/}
}
TY  - JOUR
AU  - M. I. Gordin
TI  - Homoclinic sums criterion for vanishing of spectral density
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 94
EP  - 110
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a8/
LA  - ru
ID  - ZNSL_1996_228_a8
ER  - 
%0 Journal Article
%A M. I. Gordin
%T Homoclinic sums criterion for vanishing of spectral density
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 94-110
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a8/
%G ru
%F ZNSL_1996_228_a8
M. I. Gordin. Homoclinic sums criterion for vanishing of spectral density. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 94-110. http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a8/