Characterization of Gaussian measures by the isoperimetric property of half-spaces
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 31-38
Voir la notice de l'article provenant de la source Math-Net.Ru
If the half-spaces of the form $\{x\in\mathbb R^n\colon x_1\le c\}$ are extremal in the isoperimetric problem for the product-measure $\mu^n$, $n\ge2$, then the marginal distribution $\mu$ is Gaussian. Bibl. 8 titles.
@article{ZNSL_1996_228_a3,
author = {S. G. Bobkov and C. Houdr\'e},
title = {Characterization of {Gaussian} measures by the isoperimetric property of half-spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {31--38},
publisher = {mathdoc},
volume = {228},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a3/}
}
TY - JOUR AU - S. G. Bobkov AU - C. Houdré TI - Characterization of Gaussian measures by the isoperimetric property of half-spaces JO - Zapiski Nauchnykh Seminarov POMI PY - 1996 SP - 31 EP - 38 VL - 228 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a3/ LA - ru ID - ZNSL_1996_228_a3 ER -
S. G. Bobkov; C. Houdré. Characterization of Gaussian measures by the isoperimetric property of half-spaces. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 31-38. http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a3/