Uniformly distributed hitting position for two-dimensional anisotropic diffusion process: the limit normed curve
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 333-348

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $W_1$ and $W_2$ be independent Wiener processes on the halfline, and let $W^{(a)}=(W_1,aW_2)$ ($a\ge1$). We consider open neighborhoods of the initial point with the uniform hitting density. This property determines uniquely the form of neighborhood. The main result: there exists a limit form of such a neighborhood as $a\to\infty$. Properties of such a limit form are under investigation. Bibl. 2 titles.
@article{ZNSL_1996_228_a26,
     author = {B. P. Harlamov},
     title = {Uniformly distributed hitting position for two-dimensional anisotropic diffusion process: the limit normed curve},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {333--348},
     publisher = {mathdoc},
     volume = {228},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a26/}
}
TY  - JOUR
AU  - B. P. Harlamov
TI  - Uniformly distributed hitting position for two-dimensional anisotropic diffusion process: the limit normed curve
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 333
EP  - 348
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a26/
LA  - ru
ID  - ZNSL_1996_228_a26
ER  - 
%0 Journal Article
%A B. P. Harlamov
%T Uniformly distributed hitting position for two-dimensional anisotropic diffusion process: the limit normed curve
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 333-348
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a26/
%G ru
%F ZNSL_1996_228_a26
B. P. Harlamov. Uniformly distributed hitting position for two-dimensional anisotropic diffusion process: the limit normed curve. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 333-348. http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a26/