A process of orthogonalization in the Gauss space
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 300-311
Voir la notice de l'article provenant de la source Math-Net.Ru
A group of orthogonal operators is considered such that it transforms a given family of Gaussian random variables into a family independent of another given Gaussian family. A way to study distributions of suprema is proposed. Bibl. 5 titles.
@article{ZNSL_1996_228_a24,
author = {V. N. Sudakov},
title = {A process of orthogonalization in the {Gauss} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {300--311},
publisher = {mathdoc},
volume = {228},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a24/}
}
V. N. Sudakov. A process of orthogonalization in the Gauss space. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 300-311. http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a24/