Minimax hypotheses testing for nondegenerate loss functions and extreme convex problems
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 162-188

Voir la notice de l'article provenant de la source Math-Net.Ru

We study some class of minimax problems of signal detection under nonparametric alternatives and a modification of these problems for some class of loss functions. Under rather general assumption we obtain the exact asymptotics (of Gaussian type) for minimax error probabolities and the structure of asymptotically minimax tests. The methods are based on a reduction of the problems under consideration to extremal problems of minimization of some Hilbert norm on convex sets of sequenses of probability measures on the real line. These extremal problems are investigated in [5] for alternating type of $l_q$-ellipsoids with $l_p$-balls removed. Bibl. 16 titles.
@article{ZNSL_1996_228_a13,
     author = {Y. I. Ingster},
     title = {Minimax hypotheses testing for nondegenerate loss functions and extreme convex problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--188},
     publisher = {mathdoc},
     volume = {228},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a13/}
}
TY  - JOUR
AU  - Y. I. Ingster
TI  - Minimax hypotheses testing for nondegenerate loss functions and extreme convex problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 162
EP  - 188
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a13/
LA  - ru
ID  - ZNSL_1996_228_a13
ER  - 
%0 Journal Article
%A Y. I. Ingster
%T Minimax hypotheses testing for nondegenerate loss functions and extreme convex problems
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 162-188
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a13/
%G ru
%F ZNSL_1996_228_a13
Y. I. Ingster. Minimax hypotheses testing for nondegenerate loss functions and extreme convex problems. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 162-188. http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a13/