Approximation of convolutions by accompanying laws under the existence of moment of low orders
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 135-141

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if a one-dimensional distribution $F$ has finite moment of the order $1+\beta$ for some $\beta$, $\frac12\le\beta\le1$, then the rate of approximation of the $n$-fold convolution $F^n$ by accompanying laws is $O(n^{-\frac12})$. Moreover, if, in addition, $\mathbf E\xi^2=\infty$, $\frac12\beta1$, then this rate of approximation is $o(n^{-\frac12})$. The question about the true rate of approximation of $F^n$ by infinitely divisible and accompanying laws is discussed. Bibl. 27 titles.
@article{ZNSL_1996_228_a10,
     author = {A. Yu. Zaitsev},
     title = {Approximation of convolutions by accompanying laws under the existence of moment of low orders},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--141},
     publisher = {mathdoc},
     volume = {228},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a10/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - Approximation of convolutions by accompanying laws under the existence of moment of low orders
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 135
EP  - 141
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a10/
LA  - ru
ID  - ZNSL_1996_228_a10
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T Approximation of convolutions by accompanying laws under the existence of moment of low orders
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 135-141
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a10/
%G ru
%F ZNSL_1996_228_a10
A. Yu. Zaitsev. Approximation of convolutions by accompanying laws under the existence of moment of low orders. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 135-141. http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a10/