The parking problem by various length intervals
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 16-23

Voir la notice de l'article provenant de la source Math-Net.Ru

A modified parking problem is considered. Intervals of various lenght (in this case there are two kinds of intervals) fill a large interval. Asymptotic behaviour of the mean number of the accomodated intervals is obtained. Bibl. 2 titles.
@article{ZNSL_1996_228_a1,
     author = {S. M. Anan'evski},
     title = {The parking problem by various length intervals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {16--23},
     publisher = {mathdoc},
     volume = {228},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a1/}
}
TY  - JOUR
AU  - S. M. Anan'evski
TI  - The parking problem by various length intervals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 16
EP  - 23
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a1/
LA  - ru
ID  - ZNSL_1996_228_a1
ER  - 
%0 Journal Article
%A S. M. Anan'evski
%T The parking problem by various length intervals
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 16-23
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a1/
%G ru
%F ZNSL_1996_228_a1
S. M. Anan'evski. The parking problem by various length intervals. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 1, Tome 228 (1996), pp. 16-23. http://geodesic.mathdoc.fr/item/ZNSL_1996_228_a1/