Symmetrization, Green's function, and conformal mappings
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 80-92

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $h(z\zeta)-\log|z-\zeta|$ be the Green function of a planar domain $D$. The behavior of the linear combination $h(z,z)-h(\zeta,\zeta)-2h(z,\zeta)$ under certain symmetrization transformations of $D$ is studied. Covering and distortion theorems in the theory of univalent functions are proved as applications. Bibl. 9 titles.
@article{ZNSL_1996_226_a7,
     author = {V. N. Dubinin},
     title = {Symmetrization, {Green's} function, and conformal mappings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {80--92},
     publisher = {mathdoc},
     volume = {226},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a7/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Symmetrization, Green's function, and conformal mappings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 80
EP  - 92
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a7/
LA  - ru
ID  - ZNSL_1996_226_a7
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Symmetrization, Green's function, and conformal mappings
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 80-92
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a7/
%G ru
%F ZNSL_1996_226_a7
V. N. Dubinin. Symmetrization, Green's function, and conformal mappings. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 80-92. http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a7/