Symmetrization, Green's function, and conformal mappings
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 80-92
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $h(z\zeta)-\log|z-\zeta|$ be the Green function of a planar domain $D$. The behavior of the linear combination $h(z,z)-h(\zeta,\zeta)-2h(z,\zeta)$ under certain symmetrization transformations of $D$ is studied. Covering and distortion theorems in the theory of univalent functions are proved as applications. Bibl. 9 titles.
@article{ZNSL_1996_226_a7,
author = {V. N. Dubinin},
title = {Symmetrization, {Green's} function, and conformal mappings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {80--92},
publisher = {mathdoc},
volume = {226},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a7/}
}
V. N. Dubinin. Symmetrization, Green's function, and conformal mappings. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 80-92. http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a7/