On value regions of a functional system in the class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 69-79
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $T_R$ be the class of functions $$ f(z)=z+\sum^\infty_{n=2}c_nz^n $$ that are regular and typically real in the disk $E=\{z\colon|z|<1\}$. For this class, the region of values of the system $\{f(z_0),f(r)\}$ for $z_0\in E$, $r\in(-1,1)$ is studied. The sets \begin{align*} D_r=\{w\colon w=f(z_0),\ f\in T_R,\ f(r)=a\}\quad&\text{for}\quad-1\le r\le1,\\ \Delta_r=\{(c_2,c_3)\colon f\in T_R,\ -f(-r)=a\}\quad&\text{for}\quad0<r\le1 \end{align*} are found, where $(r(1+r)^{-2},r(1-r)^{-2})$ is an arbitrary fixed number. Bibl. 11 titles.
@article{ZNSL_1996_226_a6,
author = {E. G. Goluzina},
title = {On value regions of a~functional system in the class of typically real functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {69--79},
year = {1996},
volume = {226},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a6/}
}
E. G. Goluzina. On value regions of a functional system in the class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 69-79. http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a6/