On nonhomogeneous Waring equations
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 65-68
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for an arbitrary positive integer $k$ the equation
$$
n=x^2+y^2+z^3+u^3+v^4+w^{14}+t^{4k+1}
$$
has a positive integer solution for all sufficiently large $n$. Bibl. 6 titles.
@article{ZNSL_1996_226_a5,
author = {E. P. Golubeva},
title = {On nonhomogeneous {Waring} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {65--68},
publisher = {mathdoc},
volume = {226},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a5/}
}
E. P. Golubeva. On nonhomogeneous Waring equations. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 65-68. http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a5/