On nonhomogeneous Waring equations
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 65-68

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for an arbitrary positive integer $k$ the equation $$ n=x^2+y^2+z^3+u^3+v^4+w^{14}+t^{4k+1} $$ has a positive integer solution for all sufficiently large $n$. Bibl. 6 titles.
@article{ZNSL_1996_226_a5,
     author = {E. P. Golubeva},
     title = {On nonhomogeneous {Waring} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {65--68},
     publisher = {mathdoc},
     volume = {226},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a5/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - On nonhomogeneous Waring equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 65
EP  - 68
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a5/
LA  - ru
ID  - ZNSL_1996_226_a5
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T On nonhomogeneous Waring equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 65-68
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a5/
%G ru
%F ZNSL_1996_226_a5
E. P. Golubeva. On nonhomogeneous Waring equations. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 65-68. http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a5/