Arcs and series of Farey
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 52-59

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a finite subdivision of the interval $[0,1]$ into Farey's arcs in which the large as well as small arcs are explicitly presented. This subdivision is compared with Kloosterman's classical subdivision and the infinite subdivision by the group of modular transformations. Bibl. 5 titles.
@article{ZNSL_1996_226_a3,
     author = {A. I. Vinogradov},
     title = {Arcs and series of {Farey}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--59},
     publisher = {mathdoc},
     volume = {226},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a3/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - Arcs and series of Farey
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 52
EP  - 59
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a3/
LA  - ru
ID  - ZNSL_1996_226_a3
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T Arcs and series of Farey
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 52-59
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a3/
%G ru
%F ZNSL_1996_226_a3
A. I. Vinogradov. Arcs and series of Farey. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 52-59. http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a3/