Distribution of Fourier coefficient values for modular forms of weight 1
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 196-227 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For modular forms of weight 1, the distribution of values of their Fourier coefficients over polynomial sequences of natural numbers is considered. A new proof of Bernays' theorem is given. It is proved that the error term in the well-known Rankin–Selberg asymptotic formula can be improved for cusp forms associated with binary theta series. Bibl. 52 titles.
@article{ZNSL_1996_226_a14,
     author = {O. M. Fomenko},
     title = {Distribution of {Fourier} coefficient values for modular forms of weight~1},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--227},
     year = {1996},
     volume = {226},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a14/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Distribution of Fourier coefficient values for modular forms of weight 1
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 196
EP  - 227
VL  - 226
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a14/
LA  - ru
ID  - ZNSL_1996_226_a14
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Distribution of Fourier coefficient values for modular forms of weight 1
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 196-227
%V 226
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a14/
%G ru
%F ZNSL_1996_226_a14
O. M. Fomenko. Distribution of Fourier coefficient values for modular forms of weight 1. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 196-227. http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a14/