Distribution of Fourier coefficient values for modular forms of weight~1
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 196-227

Voir la notice de l'article provenant de la source Math-Net.Ru

For modular forms of weight 1, the distribution of values of their Fourier coefficients over polynomial sequences of natural numbers is considered. A new proof of Bernays' theorem is given. It is proved that the error term in the well-known Rankin–Selberg asymptotic formula can be improved for cusp forms associated with binary theta series. Bibl. 52 titles.
@article{ZNSL_1996_226_a14,
     author = {O. M. Fomenko},
     title = {Distribution of {Fourier} coefficient values for modular forms of weight~1},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--227},
     publisher = {mathdoc},
     volume = {226},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a14/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Distribution of Fourier coefficient values for modular forms of weight~1
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 196
EP  - 227
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a14/
LA  - ru
ID  - ZNSL_1996_226_a14
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Distribution of Fourier coefficient values for modular forms of weight~1
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 196-227
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a14/
%G ru
%F ZNSL_1996_226_a14
O. M. Fomenko. Distribution of Fourier coefficient values for modular forms of weight~1. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 196-227. http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a14/