Extremal configurations in some problems on the capacity and harmonic measure
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 170-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study certain extremal problems concerning the capacity of a condenser and the harmonic measure of a compact set. In particular, we answer in the negative Tamrazov's question on the minimum of the capacity of a condenser. We find the solution to Dubinin's problem on the maximum of the harmonic measure of a boundary set in the family of domains containing no “long” segments of given inclination. It is also shown that the segment $[1-L,1]$ has the maximal harmonic measure at the point $z=0$ among all curves $\gamma=\{z=z(t),\ 0\le t\le1\}$, $z(0)=1$, that lie in the unit disk and have given length $L$, $0. The proofs are based on Baernstein's method of $*$-functions, Dubinin's dissymmetrization method, and the method of extremal metrics. Bibl. 21 titles.
@article{ZNSL_1996_226_a13,
     author = {A. Yu. Solynin},
     title = {Extremal configurations in some problems on the capacity and harmonic measure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {170--195},
     year = {1996},
     volume = {226},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a13/}
}
TY  - JOUR
AU  - A. Yu. Solynin
TI  - Extremal configurations in some problems on the capacity and harmonic measure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 170
EP  - 195
VL  - 226
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a13/
LA  - ru
ID  - ZNSL_1996_226_a13
ER  - 
%0 Journal Article
%A A. Yu. Solynin
%T Extremal configurations in some problems on the capacity and harmonic measure
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 170-195
%V 226
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a13/
%G ru
%F ZNSL_1996_226_a13
A. Yu. Solynin. Extremal configurations in some problems on the capacity and harmonic measure. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 170-195. http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a13/