Convolution properties of some classes of analytic functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 138-154

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal A$ denote the class of functions analytic in $|z|1$ normalized so that $f(0)=0$ and $f'(0)=1$ and let $\mathcal R(\alpha,\beta)\subset\mathcal A$ be the class of functions $f$ such that $$ \operatorname{Re}[f'(z)+\alpha zF''(z)]>\beta,\qquad\operatorname{Re}\alpha>0,\quad\beta1. $$ We determine conditions so that (i) $f\in\mathcal R(\alpha_1,\beta_1)$, $g\in\mathcal R(\alpha_2,\beta_2)$ implies $f*g$, convolution of $f$ and $g$, is convex; (ii) $f\in\mathcal R(0,\beta_1)$, $g\in\mathcal R(0,\beta_2)$ implies $f*g$ is starlike; (iii) $f\in\mathcal A$ satisfying $f'(z)[f(z)/z]^{\mu-1}\prec1+\lambda z$, $\mu>0$, $0\lambda1$ is starlike and (iv) $f\in\mathcal A$ satisfying $f'(z)+\alpha zf''(z)\prec1+\delta z$, $\alpha>0$, $\delta>0$ is convex or starlike. Bibl. 16 titles.
@article{ZNSL_1996_226_a11,
     author = {S. Ponnusamy and Vikramaditya Singh},
     title = {Convolution properties of some classes of analytic functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--154},
     publisher = {mathdoc},
     volume = {226},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a11/}
}
TY  - JOUR
AU  - S. Ponnusamy
AU  - Vikramaditya Singh
TI  - Convolution properties of some classes of analytic functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 138
EP  - 154
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a11/
LA  - en
ID  - ZNSL_1996_226_a11
ER  - 
%0 Journal Article
%A S. Ponnusamy
%A Vikramaditya Singh
%T Convolution properties of some classes of analytic functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 138-154
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a11/
%G en
%F ZNSL_1996_226_a11
S. Ponnusamy; Vikramaditya Singh. Convolution properties of some classes of analytic functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 13, Tome 226 (1996), pp. 138-154. http://geodesic.mathdoc.fr/item/ZNSL_1996_226_a11/