Lyapunov's direct method in estimates of topological entropy
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 62-75
Voir la notice de l'article provenant de la source Math-Net.Ru
An upper estimate for the topological entropy of a dynamical system defined by a system of ODE is obtained. The estimate involves the Lyapunov functions and Losinskii's logarithmic norm. The proof uses the known fact that the topological entropy of a mapping acting in a compact space $K$ can be estimated via the fractal dimension of $K$. Bibl. 28 titles.
@article{ZNSL_1995_231_a3,
author = {V. A. Boichenko and G. A. Leonov},
title = {Lyapunov's direct method in estimates of topological entropy},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {62--75},
publisher = {mathdoc},
volume = {231},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a3/}
}
V. A. Boichenko; G. A. Leonov. Lyapunov's direct method in estimates of topological entropy. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 62-75. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a3/