Lyapunov's direct method in estimates of topological entropy
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 62-75

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper estimate for the topological entropy of a dynamical system defined by a system of ODE is obtained. The estimate involves the Lyapunov functions and Losinskii's logarithmic norm. The proof uses the known fact that the topological entropy of a mapping acting in a compact space $K$ can be estimated via the fractal dimension of $K$. Bibl. 28 titles.
@article{ZNSL_1995_231_a3,
     author = {V. A. Boichenko and G. A. Leonov},
     title = {Lyapunov's direct method in estimates of topological entropy},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {62--75},
     publisher = {mathdoc},
     volume = {231},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a3/}
}
TY  - JOUR
AU  - V. A. Boichenko
AU  - G. A. Leonov
TI  - Lyapunov's direct method in estimates of topological entropy
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 62
EP  - 75
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a3/
LA  - ru
ID  - ZNSL_1995_231_a3
ER  - 
%0 Journal Article
%A V. A. Boichenko
%A G. A. Leonov
%T Lyapunov's direct method in estimates of topological entropy
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 62-75
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a3/
%G ru
%F ZNSL_1995_231_a3
V. A. Boichenko; G. A. Leonov. Lyapunov's direct method in estimates of topological entropy. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 62-75. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a3/