Projective theory of graphs and configurations of lines
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 309-322

Voir la notice de l'article provenant de la source Math-Net.Ru

The spaces of disjoint configurations of $k$-dimensional subspaces in $\mathbb RP^{2k+1}$ (for example, lines in $\mathbb RP^3$) are studied. These spaces are modeled by various simplicial schemes, and the homology groups of the latter are computed in certain cases. We use the fact that every configuration can be assigned a so-called projective graph, which is a class of graphs with respect to a certain equivalence relation. Bibl. 5 titles.
@article{ZNSL_1995_231_a21,
     author = {S. I. Khashin},
     title = {Projective theory of graphs and configurations of lines},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {309--322},
     publisher = {mathdoc},
     volume = {231},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a21/}
}
TY  - JOUR
AU  - S. I. Khashin
TI  - Projective theory of graphs and configurations of lines
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 309
EP  - 322
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a21/
LA  - ru
ID  - ZNSL_1995_231_a21
ER  - 
%0 Journal Article
%A S. I. Khashin
%T Projective theory of graphs and configurations of lines
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 309-322
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a21/
%G ru
%F ZNSL_1995_231_a21
S. I. Khashin. Projective theory of graphs and configurations of lines. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 309-322. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a21/