Affine-inscribed and affine-circumscribed polygons and polytopes
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 286-298

Voir la notice de l'article provenant de la source Math-Net.Ru

Five theorems on polygons and polytopes inscribed in (or circumscribed about) a convex compact set in the plane or space are proved by topological methods. In particular, it is proved that for every interior point $O$ of a convex compact set in $\mathbb R^3$, there exists a two-dimensional section through $O$ circumscribed about an affine image of a regular octagon. It is also proved that every compact convex set in $\mathbb R^3$ (except the cases listed below) is circumscribed about an affine image of a cube-octahedron (the convex hull of the midpoints of the edges of a cube). Possible exceptions are provided by the bodies containing a parallelogram $P$ and contained in a cylinder with directrix $P$. Bibl. 29 titles.
@article{ZNSL_1995_231_a19,
     author = {V. V. Makeev},
     title = {Affine-inscribed and affine-circumscribed polygons and polytopes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {286--298},
     publisher = {mathdoc},
     volume = {231},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a19/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - Affine-inscribed and affine-circumscribed polygons and polytopes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 286
EP  - 298
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a19/
LA  - ru
ID  - ZNSL_1995_231_a19
ER  - 
%0 Journal Article
%A V. V. Makeev
%T Affine-inscribed and affine-circumscribed polygons and polytopes
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 286-298
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a19/
%G ru
%F ZNSL_1995_231_a19
V. V. Makeev. Affine-inscribed and affine-circumscribed polygons and polytopes. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 286-298. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a19/