Differential geometry ``in the large'' of plane algebraic curves and integral formulas for invariants of singularities
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 255-268
Voir la notice de l'article provenant de la source Math-Net.Ru
We generalize the Plücker formula for the number of inflection points of a complex projective curve and derive a formula for the number of sextatic points of such a curve. We also obtain an upper estimate for the number of vertices of a real algebraic curve. The proof uses a new result related with integration on the Euler characteristic. Bibl. 5 titles.
@article{ZNSL_1995_231_a17,
author = {A. O. Viro},
title = {Differential geometry ``in the large'' of plane algebraic curves and integral formulas for invariants of singularities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {255--268},
publisher = {mathdoc},
volume = {231},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a17/}
}
TY - JOUR AU - A. O. Viro TI - Differential geometry ``in the large'' of plane algebraic curves and integral formulas for invariants of singularities JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 255 EP - 268 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a17/ LA - ru ID - ZNSL_1995_231_a17 ER -
%0 Journal Article %A A. O. Viro %T Differential geometry ``in the large'' of plane algebraic curves and integral formulas for invariants of singularities %J Zapiski Nauchnykh Seminarov POMI %D 1995 %P 255-268 %V 231 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a17/ %G ru %F ZNSL_1995_231_a17
A. O. Viro. Differential geometry ``in the large'' of plane algebraic curves and integral formulas for invariants of singularities. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 255-268. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a17/