Differential geometry “in the large” of plane algebraic curves and integral formulas for invariants of singularities
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 255-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We generalize the Plücker formula for the number of inflection points of a complex projective curve and derive a formula for the number of sextatic points of such a curve. We also obtain an upper estimate for the number of vertices of a real algebraic curve. The proof uses a new result related with integration on the Euler characteristic. Bibl. 5 titles.
@article{ZNSL_1995_231_a17,
     author = {A. O. Viro},
     title = {Differential geometry {\textquotedblleft}in the large{\textquotedblright} of plane algebraic curves and integral formulas for invariants of singularities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {255--268},
     year = {1995},
     volume = {231},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a17/}
}
TY  - JOUR
AU  - A. O. Viro
TI  - Differential geometry “in the large” of plane algebraic curves and integral formulas for invariants of singularities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 255
EP  - 268
VL  - 231
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a17/
LA  - ru
ID  - ZNSL_1995_231_a17
ER  - 
%0 Journal Article
%A A. O. Viro
%T Differential geometry “in the large” of plane algebraic curves and integral formulas for invariants of singularities
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 255-268
%V 231
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a17/
%G ru
%F ZNSL_1995_231_a17
A. O. Viro. Differential geometry “in the large” of plane algebraic curves and integral formulas for invariants of singularities. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 255-268. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a17/