Differential geometry ``in the large'' of plane algebraic curves and integral formulas for invariants of singularities
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 255-268

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the Plücker formula for the number of inflection points of a complex projective curve and derive a formula for the number of sextatic points of such a curve. We also obtain an upper estimate for the number of vertices of a real algebraic curve. The proof uses a new result related with integration on the Euler characteristic. Bibl. 5 titles.
@article{ZNSL_1995_231_a17,
     author = {A. O. Viro},
     title = {Differential geometry ``in the large'' of plane algebraic curves and integral formulas for invariants of singularities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {255--268},
     publisher = {mathdoc},
     volume = {231},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a17/}
}
TY  - JOUR
AU  - A. O. Viro
TI  - Differential geometry ``in the large'' of plane algebraic curves and integral formulas for invariants of singularities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 255
EP  - 268
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a17/
LA  - ru
ID  - ZNSL_1995_231_a17
ER  - 
%0 Journal Article
%A A. O. Viro
%T Differential geometry ``in the large'' of plane algebraic curves and integral formulas for invariants of singularities
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 255-268
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a17/
%G ru
%F ZNSL_1995_231_a17
A. O. Viro. Differential geometry ``in the large'' of plane algebraic curves and integral formulas for invariants of singularities. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 255-268. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a17/