Generalized Sperner lemma and subdivisions into simplices of equal volume
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 245-254
Voir la notice de l'article provenant de la source Math-Net.Ru
A generalization of the well-known Sperner lemma is suggested, which covers the case of arbitrary subdivisions of (convex) polyhedra into (convex) polyhedra. It is used for giving a new proof of the Thomas–Monsky–Mead theorem saying that the $n$-cube can be subdivided into $N$ simplices of equal volume if and only if $N$ is divisible by $n!$. Some new related results are announced. Bibl. 6 titles.
@article{ZNSL_1995_231_a16,
author = {Boris M. Bekker and Nikita Yu. Netsvetaev},
title = {Generalized {Sperner} lemma and subdivisions into simplices of equal volume},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {245--254},
publisher = {mathdoc},
volume = {231},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a16/}
}
TY - JOUR AU - Boris M. Bekker AU - Nikita Yu. Netsvetaev TI - Generalized Sperner lemma and subdivisions into simplices of equal volume JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 245 EP - 254 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a16/ LA - en ID - ZNSL_1995_231_a16 ER -
Boris M. Bekker; Nikita Yu. Netsvetaev. Generalized Sperner lemma and subdivisions into simplices of equal volume. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 245-254. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a16/