Generalized Sperner lemma and subdivisions into simplices of equal volume
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 245-254

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the well-known Sperner lemma is suggested, which covers the case of arbitrary subdivisions of (convex) polyhedra into (convex) polyhedra. It is used for giving a new proof of the Thomas–Monsky–Mead theorem saying that the $n$-cube can be subdivided into $N$ simplices of equal volume if and only if $N$ is divisible by $n!$. Some new related results are announced. Bibl. 6 titles.
@article{ZNSL_1995_231_a16,
     author = {Boris M. Bekker and Nikita Yu. Netsvetaev},
     title = {Generalized {Sperner} lemma and subdivisions into simplices of equal volume},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {245--254},
     publisher = {mathdoc},
     volume = {231},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a16/}
}
TY  - JOUR
AU  - Boris M. Bekker
AU  - Nikita Yu. Netsvetaev
TI  - Generalized Sperner lemma and subdivisions into simplices of equal volume
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 245
EP  - 254
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a16/
LA  - en
ID  - ZNSL_1995_231_a16
ER  - 
%0 Journal Article
%A Boris M. Bekker
%A Nikita Yu. Netsvetaev
%T Generalized Sperner lemma and subdivisions into simplices of equal volume
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 245-254
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a16/
%G en
%F ZNSL_1995_231_a16
Boris M. Bekker; Nikita Yu. Netsvetaev. Generalized Sperner lemma and subdivisions into simplices of equal volume. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 245-254. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a16/