Differential topology of quotients of complex surfaces by complex conjugation
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 215-221

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains a brief survey of the author's results on the diffeomorphism type of quotients of complex surfaces by anti-holomorphic involutions. The conjecture of complete decomposability is discussed, which says that if such a quotient is simply connected, then it is completely decomposable, i.e., is diffeomorphic to the connected sum of several copies of the projective plane (possibly, with reversed orientation) and the quadric. Bibl. 11 titles.
@article{ZNSL_1995_231_a14,
     author = {S. M. Finashin},
     title = {Differential topology of quotients of complex surfaces by complex conjugation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {215--221},
     publisher = {mathdoc},
     volume = {231},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a14/}
}
TY  - JOUR
AU  - S. M. Finashin
TI  - Differential topology of quotients of complex surfaces by complex conjugation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 215
EP  - 221
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a14/
LA  - ru
ID  - ZNSL_1995_231_a14
ER  - 
%0 Journal Article
%A S. M. Finashin
%T Differential topology of quotients of complex surfaces by complex conjugation
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 215-221
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a14/
%G ru
%F ZNSL_1995_231_a14
S. M. Finashin. Differential topology of quotients of complex surfaces by complex conjugation. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 215-221. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a14/