The topological structure of complex hypersurfaces with quadractic singular points
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 210-214
Voir la notice de l'article provenant de la source Math-Net.Ru
Hypersurfaces of sufficiently high degree in $\mathbb CP^{n+1}$, $n\ge3$, with fixed number and possibly fixed positions of singular points are studied. In the case where all singularities are quadratic, a topological description of such a hypersurface is given bymeans of decomposing it into a connected sum of special form. In this case, the diffeomorphism type of the hypersurface is determined by its dimension, degree, and the number of singular points. Bibl. 6 titles.
@article{ZNSL_1995_231_a13,
author = {N. Yu. Netsvetaev},
title = {The topological structure of complex hypersurfaces with quadractic singular points},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {210--214},
publisher = {mathdoc},
volume = {231},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a13/}
}
TY - JOUR AU - N. Yu. Netsvetaev TI - The topological structure of complex hypersurfaces with quadractic singular points JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 210 EP - 214 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a13/ LA - ru ID - ZNSL_1995_231_a13 ER -
N. Yu. Netsvetaev. The topological structure of complex hypersurfaces with quadractic singular points. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 210-214. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a13/