The signature theorem and some related questions
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 197-209 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some corollaries of the Hirzebruch–Thom signature theorem are discussed. The multiplicativity of the signature and the naturalness of the Pontryagin classes for coverings in the case of $\mathbb Q$-homology manifolds is proved. A geometric proof of Hirzebruch's well-known “functional equation” for the virtual signature is outlined. Bibl. 24 titles.
@article{ZNSL_1995_231_a12,
     author = {N. Yu. Netsvetaev},
     title = {The signature theorem and some related questions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {197--209},
     year = {1995},
     volume = {231},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a12/}
}
TY  - JOUR
AU  - N. Yu. Netsvetaev
TI  - The signature theorem and some related questions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 197
EP  - 209
VL  - 231
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a12/
LA  - ru
ID  - ZNSL_1995_231_a12
ER  - 
%0 Journal Article
%A N. Yu. Netsvetaev
%T The signature theorem and some related questions
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 197-209
%V 231
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a12/
%G ru
%F ZNSL_1995_231_a12
N. Yu. Netsvetaev. The signature theorem and some related questions. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 197-209. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a12/