The signature theorem and some related questions
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 197-209
Voir la notice de l'article provenant de la source Math-Net.Ru
Some corollaries of the Hirzebruch–Thom signature theorem are discussed. The multiplicativity of the signature and the naturalness of the Pontryagin classes for coverings in the case of $\mathbb Q$-homology manifolds is proved. A geometric proof of Hirzebruch's well-known “functional equation” for the virtual signature is outlined. Bibl. 24 titles.
@article{ZNSL_1995_231_a12,
author = {N. Yu. Netsvetaev},
title = {The signature theorem and some related questions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {197--209},
publisher = {mathdoc},
volume = {231},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a12/}
}
N. Yu. Netsvetaev. The signature theorem and some related questions. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 197-209. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a12/