The signature theorem and some related questions
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 197-209

Voir la notice de l'article provenant de la source Math-Net.Ru

Some corollaries of the Hirzebruch–Thom signature theorem are discussed. The multiplicativity of the signature and the naturalness of the Pontryagin classes for coverings in the case of $\mathbb Q$-homology manifolds is proved. A geometric proof of Hirzebruch's well-known “functional equation” for the virtual signature is outlined. Bibl. 24 titles.
@article{ZNSL_1995_231_a12,
     author = {N. Yu. Netsvetaev},
     title = {The signature theorem and some related questions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {197--209},
     publisher = {mathdoc},
     volume = {231},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a12/}
}
TY  - JOUR
AU  - N. Yu. Netsvetaev
TI  - The signature theorem and some related questions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 197
EP  - 209
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a12/
LA  - ru
ID  - ZNSL_1995_231_a12
ER  - 
%0 Journal Article
%A N. Yu. Netsvetaev
%T The signature theorem and some related questions
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 197-209
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a12/
%G ru
%F ZNSL_1995_231_a12
N. Yu. Netsvetaev. The signature theorem and some related questions. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 197-209. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a12/