Singular links of type $(p,2k+1)$ in the $4k+2$-sphere.~II
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 191-196

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit geometrical description of the group $M$ of pseudo-homotopy classes of singular links of type $(p,2k+1)$ in $S^{4k+2}$ is given. Bibl. 3 titles.
@article{ZNSL_1995_231_a11,
     author = {V. M. Nezhinskij},
     title = {Singular links of type $(p,2k+1)$ in the $4k+2${-sphere.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--196},
     publisher = {mathdoc},
     volume = {231},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a11/}
}
TY  - JOUR
AU  - V. M. Nezhinskij
TI  - Singular links of type $(p,2k+1)$ in the $4k+2$-sphere.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 191
EP  - 196
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a11/
LA  - ru
ID  - ZNSL_1995_231_a11
ER  - 
%0 Journal Article
%A V. M. Nezhinskij
%T Singular links of type $(p,2k+1)$ in the $4k+2$-sphere.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 191-196
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a11/
%G ru
%F ZNSL_1995_231_a11
V. M. Nezhinskij. Singular links of type $(p,2k+1)$ in the $4k+2$-sphere.~II. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 8, Tome 231 (1995), pp. 191-196. http://geodesic.mathdoc.fr/item/ZNSL_1995_231_a11/