Solutions of the membrane equation concentrated near extremal loops
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 25, Tome 230 (1995), pp. 41-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Formal asymptotic solutions of the equation $\Delta^2u-\frac{\omega^4u}{c^4(x,y)}=0$ concentrated in the vicinity of an extremal loop with $N$ vertices are constructed by applying the complex version of the ray method. Bibl. 5 titles.
@article{ZNSL_1995_230_a4,
     author = {A. S. Golubeva},
     title = {Solutions of the membrane equation concentrated near extremal loops},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {41--51},
     publisher = {mathdoc},
     volume = {230},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a4/}
}
TY  - JOUR
AU  - A. S. Golubeva
TI  - Solutions of the membrane equation concentrated near extremal loops
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 41
EP  - 51
VL  - 230
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a4/
LA  - ru
ID  - ZNSL_1995_230_a4
ER  - 
%0 Journal Article
%A A. S. Golubeva
%T Solutions of the membrane equation concentrated near extremal loops
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 41-51
%V 230
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a4/
%G ru
%F ZNSL_1995_230_a4
A. S. Golubeva. Solutions of the membrane equation concentrated near extremal loops. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 25, Tome 230 (1995), pp. 41-51. http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a4/