The conservative model of a~dissipative dynamical system
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 25, Tome 230 (1995), pp. 21-35
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R_\sigma$ be the response operator of a dissipative dynamical system (DS) governed by the equation $u_{tt}+\sigma u_t-u_{xx}=0$, $x>0$, where $\sigma=\sigma(x)\ge0$. Let $R_q$ be the response operator of a conservative DS governed by the equation $u_{tt}-u_{xx}+q(x)u=0$, $x>0$, where $q=q(x)$ is real. We demonstrate that for any dissipative DS there exists a unique conservative DS (the “model”) such that $R_\sigma=R_q$ is valid. Bibl. 10 titles.
@article{ZNSL_1995_230_a2,
author = {M. I. Belishev},
title = {The conservative model of a~dissipative dynamical system},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {21--35},
publisher = {mathdoc},
volume = {230},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a2/}
}
M. I. Belishev. The conservative model of a~dissipative dynamical system. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 25, Tome 230 (1995), pp. 21-35. http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a2/