Transform operators in a~two-dimensional inverse problem for a~finite domain
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 25, Tome 230 (1995), pp. 253-263

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to the solution of inverse problems of wave propagation at a fixed frequency based on using transform operators is suggested. A system of integral equations of the Gelfand–Levitan type is obtained. The uniqueness theorem for the refraction index in the analytic case is proved. Bibl. 6 titles.
@article{ZNSL_1995_230_a17,
     author = {A. S. Starkov},
     title = {Transform operators in a~two-dimensional inverse problem for a~finite domain},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {253--263},
     publisher = {mathdoc},
     volume = {230},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a17/}
}
TY  - JOUR
AU  - A. S. Starkov
TI  - Transform operators in a~two-dimensional inverse problem for a~finite domain
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 253
EP  - 263
VL  - 230
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a17/
LA  - ru
ID  - ZNSL_1995_230_a17
ER  - 
%0 Journal Article
%A A. S. Starkov
%T Transform operators in a~two-dimensional inverse problem for a~finite domain
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 253-263
%V 230
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a17/
%G ru
%F ZNSL_1995_230_a17
A. S. Starkov. Transform operators in a~two-dimensional inverse problem for a~finite domain. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 25, Tome 230 (1995), pp. 253-263. http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a17/